
The Analytical Community and the High Level Architecture
A Happy Marriage

John W. Ogren
The MITRE Corporation

11493 Sunset Hills Dr.
Reston, Va. 22090
jogren@mitre.org

KEYWORDS
Analysis, HLA, Time Management, FOM, SOM, Eagle, JTFp

ABSTRACT
The High Level Architecture (HLA) has presented the simulation community with a unique opportunity to leverage
the power of cooperating simulations across a broad range of applications. The HLA provides the framework and
tools to accomplish this interoperability. Many challenges still exist and the HLA is not a magical solution. Yet the
HLA over the past year has shown that it can flexibly accommodate and support the interoperability of simulations
ranging from training to analysis. Each of the broad categories of application has its own special needs and places
its own unique requirements on the use of the HLA, more specifically on the Run Time infrastructure (RTI). This
paper will describe the involvement of the Analytical community in the definition and development of the HLA.
One of the applications used to prototype and frame the analytical community’s concern was the Eagle combat
model owned and maintained by the TRADOC Analysis Center (TRAC). This paper presents an overview of the
technical approach taken to incorporate the RTI into the legacy Eagle model code, the development of the Eagle
Software and Federation Object Models, the time management scheme used to ensure causality and consistency
among the federates and a summary of the lesson learned and results.

1.0 INTRODUCTION
To validate the needs of the analytical community in
the development of the HLA, the Eagle model was used
in two applications (called federations) which tested
the HLA’s ability to support a distributed analytical
model (the Eagle Early Analysis Experiment) and to
support the sharing of functionality between service
unique (Army, Air Force, and Navy) models (the
JSIMS Protofederation).

2.0 THE EAGLE DESIGN
Eagle was developed in the late 80’s as a vehicle to
investigate the application of artificial intelligence to
explicitly model command and control in a combat
simulation. The model’s typical combat functionality
(such as attrition adjudication) relies on the extensive
combat modeling experience at TRAC and is rooted in
standard, validated algorithms. The model is
categorized as a constructive, aggregate Corps level
model with normal resolution to company size units.
Eagle uses a hybrid event structure that relies on both
the notion of continuous time using time steps (1 to 5
min) and the projecting of discrete events limited to the
duration of the time step. Eagle's architecture is built
on the object-oriented programming paradigm. This

paradigm is based on a philosophic focus on data
grouped into objects acting on other objects, rather
than on the traditional focus on processes which act on
data. The data or knowledge representation reflects the
unique requirements of the military domain. Eagle's
knowledge representation conforms to the user's
understanding of the problem space in three main
areas. First, military units, weapon systems, and
munitions are defined as objects. Second, terrain is
represented as a network of mobility corridors each of
which are objects. Third, plans are represented in
standard five-paragraph field order format, so that the
user can specify orders to units in a mission-oriented
manner. Simulated command posts respond to these
orders by accessing its domain knowledge executing
the mission as directed. Decisions are made by the
software commander and the information or directives
are passed up and down the chain of command. This
flow of information between command posts (software
objects) is very important, because the actions of the
units are not scripted based on time, but occur based on
events that cause commanders to give their approval to
execute the next portion of the plan. A software
commander's perception of the battlefield is based
solely on what his subordinates and the intelligence

system are telling him and how it relates to the
command's battle plan. Eagle portrays ground
maneuver, attack helicopter, field artillery, air defense,
air and ground intelligence units or assets and engineer
units. The primary emphasis is on Army units and
capabilities, yet Eagle also plays air force air assets
used in support of ground operations.

2.0 EAGLE ARCHITECTURE
The Eagle architecture is displayed in the figure 1. The
highest abstraction of this architecture consists of three
entities: The Application Entity which in the figure
consist of the Eagle applications and the Eagle
framework, the Application Platform Entity, and the
External Environment Entity.

Entity Services
Application Platform

KEE Object Manager

API

External Environment
Entities

Eagle Framework

Eagle Applications
SIMULATION

Attrition Mgr

KEENetwork RPC

LISP & C UNIX

RTI

GFL

Users
Scenario Developers

Analyst
Maintainers

Information Exchange
Keyboards, Mouse, Selection

 Devices, Display

ALSP

POST PROCESSORPREPROCESSOR

API

Terrain Mgr

ALSP Mgr

Agg/Disagg MgrPlanning Mgr

Control Measures
 Mgr

RTI Mgr

Controller Mgr

Unit/System/Munitions
 Mgr

Eagle Tactics Data
 Mgr

Commo Mgr

Reporter MgrGraphics Mgr

Figure 1 Eagle Architecture

Combat units exist in the simulation portion of the
Eagle Applications. The actions of these units are
modeled by the Eagle Framework Services. These
services maintain ground truth information and
provide requested information or services to the combat
units playing in the simulation. For example: If a unit
desires a route, it will query the Terrain manager.
Likewise, if the unit desires to send a message to
another unit, it will send its message to the
communications manager which will direct the
message to the recipient and apply necessary delays to
its arrival. The remaining entities, the platform
services and external environment provide the
software and hardware upon which the Eagle model
operates. The Run Time Infrastructure exits within
both the application services and as a portion of the
external environment for it provides the
communications necessary for our distributed
computing capability.

3.0 SUMMARY OF EFFORT
Eagle participated in two federations, the Eagle Early
Analysis Experiment and the Joint Training
Federation. The relationship and general configuration
of the two efforts are shown in Figure 2.

Eagle Early Analysis Experiment

Distributed Units -
 Eagle Combat units interact
 using the RTI.

Eagle

RTI

Eagle Eagle

Distributed Functionality-
 Army Combat units - Eagle
 Navy Combat units - NSS
 Air Force Combat units - NASM AP

 Federation Controller

Joint Training Federation (JTFp)

Eagle

RTI

 NSS NASM
AP

Fed
Ctrl

Design facilitate: Running as Standalone
 as Distributed Units
 as Distributed Functionality
 as Distributed Units & Functionality (not tested)

Figure 2 Summary of Effort

3.1 Eagle Early Analysis Experiment
The goal of the Eagle Early Analysis Experiment was
to modify the distributed version of Eagle to use the
communications backbone of the High Level
Architecture’s Runtime Interface. Eagle had previously
been distributed using the Aggregate Level Simulation
Protocol (ALSP). The original goal of distributed Eagle
was to develop a distributed architecture in such a way
that Eagle can maintain the same temporal, tactical,
organizational and spatial consistency on multiple
processors that currently exists on a single processor.
The purpose was to leverage a distributed environment
using multiple processors on a LAN to increase the
execution speed of the Eagle model.

The distributed Eagle design distributes the combat
units among multiple Eagle simulations on the
network. The common Eagle software environment is
duplicated on each machine or federate on the network
and combat units are selected to run on one of the
federates. Each Eagle federate maintains its own set of
core services such as terrain, attrition, tactics
knowledge base, and control measures data. The
distributed design uses interactions to maintain
consistency between these services. For example, if a
minefield is laid on one federates terrain data base,
then that minefield must be created in the data bases of
each federate. The distributed design accommodates
any mix or match of combat units on a federate.
However, a combat unit will only exist as an actual
unit in one federate. All other federates maintain a

reflected representation of the unit. The distributed
design maintains consistency between the actual
combat units and their reflected representations.

3.2 JSIMS ProtoFederation
The goal of Eagle as a member of the JSIMS
ProtoFederation was to allow externally generated
objects (combat or environmental) to interact with
Eagle generated combat units while maintaining the
same or better temporal, tactical, organizational and
spatial consistency that currently exists within the
Eagle model. The purpose was to replace Eagle’s air
operations functionality with that of the other
federation members. Air Force assets are played by the
National Air and Space (Warfare) Model Advance
Prototype (NASM-AP) and Naval Air assets are played
by the Naval Simulation System (NSS). Each of these
simulations is a service sponsored simulation meeting
their standards of validation. Thus, by Eagle joining
this federation it receives validated, verified modeling
algorithms approved by each service and therefore the
representation of air operations is better. Eagle
provides all ground combat functionality for the
federation. All ground units are reflected in the
member federates. Eagle replaces its normal fixed wing
operations by subscribing to the federation air objects
and by publishing and subscribing to interactions
between the ground and air players.

The software design allows Eagle to be run as a
standalone model, or as a member of each federation
individually or as a combination.

4.0 TECHNICAL APPROACH
The technical approach taken to incorporate the RTI
into the legacy Eagle code was focused on leveraging
Eagle’s object oriented implementation and its
software architectural design to seamlessly incorporate
the notion of external combat objects and events acting
on the Eagle federate combat units. A main
consideration when incorporating the RTI was that no
additional overhead could be incurred by the
standalone version of Eagle because of its distributed
capability. The standalone model must run the same
and execute at its normal speed.

4.1 Technical approach within Eagle
Within Eagle, the majority of the effort was to modify
the Eagle Services which exist in the Eagle Framework
(figure 1). When the Eagle model is executing as part
of a federation, these Services inherit new
functionality, or in the case of the Eagle controller,
new events. This gives the Services the ability to
recognize the need to interface appropriately with the

RTI. Figure 4 depicts a typical modification to one of
the Eagle services. Within Eagle all interactions
between units go through a Service. These Services are
responsible for modeling the interactions. In the
example shown in Figure 4, when a combat unit sends
a communications message to another unit, the
message goes through the communications manager.
The communications manager will normally just model
the delays that would be expected due to type of
equipment, jamming or the combat state of the units
communicating and deliver the message to the
receiving objects communications interface. However,
when Eagle is interacting with the RTI, the
communications manager has the additional
functionality to determine if the receiving unit exists

Communications between units.

Stand alone
The Commo Mgr. delays msg
 Jamming, Type equip, Combat state etc.

X X
Rec-Msg

Route-Msg

Commo Manager

Eagle Environment

Distribute - where addressee is on
 different machine, else same as above.

X
Rec-Msg

Route-Msg

Commo Mgr.

Eagle Environment

HLA
Mgr.

X

HLA
Mgr.

Rec-Msg
Route-Msg

Commo Mgr

Eagle Environment

Distributed Units

Distributed Functionality

Federate Member

RTI Interface
??

Figure 4 Technical Approach Internal Eagle

on the local federate. If it does not and is only a
reflected representation, the communications manager
has the additional responsibility to place the message
in an interaction and deliver it to the HLA manager (a
new Eagle Service) for publishing on the RTI. Eagle
federates that have subscribed to this interaction will
receive the message. The HLA manager on the
receiving federate will determine if the addressee is
real (not reflected); and if it is, will deliver the message
to the local communications manager just as it would
be received in the standalone version. The local
communications manager treats this message as any
other and determines that the addressee is actually
played on the federate and deliver s the message.

This diverting of interactions to the RTI is duplicated
within each Eagle Service and provides the seamless
interface with the RTI. The Eagle user, when desiring
to set up a federation or join an existing federation
(such as JTFp), must only set an Eagle load parameter
that causes the Eagle initialization code to establish

the connection to the RTI and insures that the correct
functionality has been inherited to the Services.

4.2 Technical approach between Eagle and RTI
The current version of the RTI requires that its runtime
code be incorporated as a normal part of the federate.
Therefore, a basic requirement of using the RTI is that
the federate must be executing the same type of code as
the RTI. Currently the RTI only supports models that
are written in C++. Eagle is written in LISP. Therefore
as any other model that is not written in C++ (such as
models using ADA), a separate interface must be
created to act as a broker between the model’s code and
the RTI’s code. Figure 5 depicts the approach taken by
Eagle to provide this interface to the RTI.

Eagle- Lisp

Eagle RTI - Interface C++

Socket Connection

Translator - Lisp/C
Out the socket --> (hla_talk “TIME_ADVANCE_REQUEST^1.34”)

Listen to socket (Blocked ?) --> (hla_listen)

Eagle RTI - Interface C++ Loop - RTI event or socket Calls -Do SOCKET CALL
Receive socket Stream: Tokenize, execute Case Statements which --
 Calls rti_Ambassador - time_advance_request(the_time)

Eagle RTI - Interface C++ Loop - RTI Events or socket Calls -Do RTI EVENT
fed_amb method is called: Fed_ambassador::time_advance_granted(Fed_time)
 Outputs to socket “time_advance_granted 1.34”

Calls to Fed_amb are buffered on Socket when Eagle is not Listening.

Translator - Lisp/C

Translator determines when to send info
to the socket & when to
listen to the socket

Figure 5 -- Technical Approach - External to Eagle

For Eagle’s interface to the RTI, a separate executable
was created written in C++ that brokers the
functionality between the RTI and Eagle. The
interface is called the Eagle Common Module (ECM),
which is a separate process running on the same
machine as it's attached federate. Within Eagle the
Lisp code that includes the HLA Manager (see
Technical approach within Eagle) plus the additional
code to establish the communications with the ECM is
included in the HLA Translator. Each Eagle federate’s
HLA manager communicates with the RTI through a
socket connection to the ECM. The ECM provides the
interface with the RTI’s declared Federate and RTI
ambassador C++ objects that have the functionality as
specified in the HLA RTI Interface Specification. A
typical interaction between the Eagle HLA manager,
the ECM and the RTI is shown in figure 5. The HLA
manager in response to a request from the Eagle
controller service requests to advance time. To
accomplish this, it forms a message and sends it to the
ECM via the socket connection and then begins

listening to the socket for a return answer. The ECM
C++ “main” is basically a continuous loop that is
either waiting for a call from the HLA manager or
allowing the RTI processing time. In this case, the
ECM receives the message, determines the type, and
calls the appropriate RTI ambassador service with the
provided parameters: timeAdvanceRequest (fed_time).
The ECM then loops allowing the RTI processing time
which in turn allows the RTI to call ECM declared
Federation ambassador services. In this case when the
RTI determines that the requesting federate can
advance to the new federation time, it calls the
declared Federation ambassador service
timeAdvanceGranted. This service receives the call
and forms a message to output back to the HLA
manager again via the socket connection. The HLA
manager which is waiting for the answer receives the
message, determines the type, and passes the answer
back to the controller. Calls to the ECM from the RTI
(through the Federate ambassador) are buffered on the
socket when the HLA manager in Eagle is not listening
to the socket.

This approach of providing a separate process (the
ECM) within the Eagle framework to service the RTI
has proven to be an acceptable alternative to the
preferred method of including the RTI within the
normal simulation code. The ECM supports all the
interface specification. However, additional
functionality must be included in the ECM as this
interface matures to handle federation ambassador calls
that require an immediate return answer, such as
requests for transfer of attributes. An approach that
opens an additional socket connection to a separate
Eagle Lisp process has been investigated and will be
incorporated as needed.

5.0 SOFTWARE & FEDERATION OBJECT
MODELS
As an integral part of the HLA process, simulation
models must define the information that they are
willing to share, called the Software Object Model
(SOM), and the information that they are actually
sharing as part of a unique federation, called the
Federation Object Model (FOM).

The actual class structure in the model (if it exists) is
not necessarily the class structure used in the
simulation’s SOM. For example, a typical command
unit in Eagle, such as a blue brigade command post
(BLUE_BDE_CP), would inherit or have available
assets, attributes, and physical and cognitive
functionality from 66 separate classes (figure 6).
However, much of this class structure is not needed

when determining the minimum necessary information
for the class structure defined in the SOM (See Figure
7). For Eagle, only those classes that had separate
information to be published were included in the SOM.
In fact, even though the classes in the SOM are actual
classes in the Eagle Class Structure, the information
associated with them may come from a separate class.
For example, the attribute “percent effectiveness”
comes from the Eagle object CP-Effectiveness, but for
the SOM it is included as an attribute associated with

HQ-UNITS. The internal complexity of how Eagle
manages data is hidden from the user. The goal is to
educate the user not overwhelm him.

Figure 7 depicts a portion of the Eagle SOM class
structure and the associated FOM class structures for
the Eagle Early Analysis Experiment and the JTFp. Of
interest is the translation from the Eagle SOM to the
JTFp FOM. Note that the Eagle internal class structure
had to be translated to a class name that was a

 Eagle SOM - Partial Class Structure
 MILITARY
 UNITS

AIR-MOVERS FIXED-WING-UNITS AIR-SENSOR-UNITS BLUE-AIR-SENSOR-
FLIGHT
RED-AIR-SENSOR-
FLIGHT

FIXED-WING-
ATTACKERS

BLUE-FLIGHT

RED-FLIGHT
HELICOPTER-UNITS BLUE-HELO-BN

BLUE-HELO-CO
RED-HELO-BN
RED-HELO-CO

GROUND-
MOVERS

AIR-DEFENSE-UNITS BLUE-AD-UNIT

RED-AD-UNIT
ENGINEER-UNITS B-CBT-ENGR-TM

B-CBT-HVY-ENGR-TM
R-CBT-ENGR-TM
R-GP-ENGR-TM

ARTILLERY-UNITS BLUE-ARTY-BN
BLUE-ARTY-BATTERY
RED-ARTY-BN
RED-ARTY-BATTERY

GROUND-SENSOR-
UNITS

BLUE-GROUND-
SENSOR-UNIT
RED-GROUND-
SENSOR-UNIT

GROUND-MANEUVER-
UNITS

BLUE-BN-TF

RED-MRR-BN
RED-TANK-BN
BLUE-CO
RED-CO

HQ-UNITS BLUE-CORPS-CP
BLUE-DIV-CP
RED-ARMY-CP
RED-DIV-CP
BLUE-BDE-CP
BLUE-BN-CP
BLUE-ENGINEER-CP
RED-REGT-CP
RED-BN-CP
RED-ENGINEER-CP

Base Class 1st SubClass 2nd SubClass

Military Units Ground Movers

Air Movers Air Maneuver

Fixed Wing

Eagle SOM Class Structure
 (partial)

JTFp FOM
 (partial)

Distributed Eagle FOM
 (partial)

Base Class

Player

1st SubClass 2nd SubClass

Air Player

Aircraft

Flight

Ballistic Missile

Ground Player

Mobile Ground

Aggregate Ground

Fixed Site

Float Player

Figure 7 Eagle SOM and FOM Example

BLUE-BDE-CP STAFF LOG-MANAGER
LOG-ISSUER
HQ-UNITS GROUND-MOVERS ADA-FIRERS

ARMY-UNITS
MILITARY-UNITS LOG-RECEIVER

PURGE-UNITS
SIGNATURE-GROUND-
MOVERS

SIGNATURE

RES-BATTLE-
OPERATIONS-GROUND-
MOVERS

RES-BATTLE-
OPERATIONS-
MILITARY-UNITS

RES-BATTLE-
OPERATIONS

DIRECT-FIRE-INFO-
MILITARY-UNITS

DIRECT-FIRE-INFO

ENGR-INFO-MILITARY-
UNITS

ENGR-INFO

RES-EFFECTIVENESS-
MILITARY-UNITS

RES-EFFECTIVENESS

AD-INFO-HQ-UNITS AD-INFO-MILITARY-
UNITS

AD-INFO

CMD-PLANNING-HQ-
UNITS

CMD-PLANNING

COMMO-HQ-UNITS COMMO-GROUND-
MOVERS

COMMO-MILITARY-
UNITS

COMMO

CP-BATTLE-
OPERATIONS-HQ-UNITS

CP-BATTLE-
OPERATIONS

CP-DECISION-
FACTORS-HQ-UNITS

CP-DECISION-FACTORS

CP-EFFECTIVENESS-
HQ-UNITS

CP-EFFECTIVENESS

GENERAL-HQ-UNITS GENERAL-MILITARY-
UNITS

GENERAL

INDIRECT-FIRE-INFO-
HQ-UNITS

INDIRECT-FIRE-INFO-
MILITARY-UNITS

INDIRECT-FIRE-INFO

INTEL-HQ-UNITS INTEL-MILITARY-UNITS INTEL
MEMORY-HQ-UNITS MEMORY-GROUND-

MOVERS
MEMORY- MILITARY-
UNITS

MEMORY

METHOD-MAPS-HQ-
UNITS

METHOD-MAPS-
GROUND-MOVERS

METHOD-MAPS-
MILITARY-UNITS

METHOD-MAPS

MOVEMENT-HQ-UNITS MOVEMENT- GROUND-
MOVERS

MOVEMENT- MILITARY-
UNITS

MOVEMENT

PERCEPTIONS-HQ-
UNITS

PERCEPTIONS-
MILITARY-UNITS

PERCEPTIONS

RES-DECISION-
FACTORS-HQ-UNITS

RES-DECISION-
FACTORS-GROUND-
MOVERS

RES-DECISION-
FACTORS- MILITARY-
UNITS
RES-DECISION-
FACTORS-ARMY-UNITS

SUPPLY/PERSONNEL-
LOG-MANAGER

SUPPLY/PERSONNEL

A bottom
level class.

Instances
would be
created

and
attached
to this
class

The instances
would
inherit

from all
the objects
to the right

This entire
Class structure
feeds into the
bottom level
Class
(BLUE-BDE-CP)

Figure 6 Normal Eagle Class Strucuture

compromise among the federates. This is an example
of the negotiations that must take place between the
federates when compiling a FOM.

The class structure that is defined in the FOM must be
of some practical use. Therefore attributes are
associated with each class. The types of attributes that
are defined are up to the federates in negotiation with
the federation. However in the Eagle Early Analysis
Experiment and the JTFp, the driving requirement for
the number and type of attributes was that information
needed by the reflecting federate to drive its detection
algorithms (Figure 8). Within a typical Eagle combat
unit, it requires approximately 450 attributes for a unit
to maintain its perceived state of itself and
subordinates. Of these 450 attributes, only 43 are need
to be published for ground maneuver units to drive the
Eagle ground detection process, and only 29 need to be
published to drive the detection processes on the
member federates of the JTFp federation. Again
translations are required from Eagle’s normal
nomenclature to that used by the JTFp. For example,
Eagle characterizes a unit by “side," whereas in the
JTPp the same attribute is called affiliation.

In addition to the object class structures and attributes,
interactions must be defined to affect the actions
between players in the simulations that are not played
on the same federate. With the Eagle Early Analysis
Experiment, the interactions defined can be

categorized in two groups: those interactions that
affected actions between combat players and
interactions that maintained the consistency between
the services on the separate Eagle federates (Figure 9).

0 Unit Interactions
- Detection (implicit)

- Direct Fire
- Indirect Fire
- Air to ground

- Ground to air
- Communications

Typical Interactions between combat units and services in the
Eagle Early Analysis Experiment

0 Service Interactions
- Event Queue

Management
-Add/remove events

- Control Measures
Database consistency
-Create CM

- Terrain Database
consistency
- false targets

- register engr work
- Attrition

-Ammo use
-Suppression

Command & Control
between units is

established by the Plan.
All reporting and directing

go through Commo channels.

Figure 9 Eagle Early Analysis Interactions

As indicated previously in the Eagle distributed design,
the choice was made to distribute units not services.
The services are duplicated on each Eagle federate.
Therefore it is incumbent upon the HLA manager on
each federate to insure that as local changes are made
to its knowledge bases, that that information is sent out
to all federates in the federation. These interactions are
referred to as data base consistency interactions. For
example, if attrition occurs within a federate and

Number of Attributes to define
a typical ground combat unit in
Eagle: ~ 400

Number of Attributes to reflect
units in Distributed Eagle:
 Define Update
Ground Movers 43 31
Air Maneuver 35 26
Fixed Wing 33 22

Number of Attributes to reflect
Aggregate Ground Units in JTFp:
 Define Update
Ground Movers 29 17

Distributed Eagle FOM
 (Partial - Ground Mover)

 OBJECT ATTRIBUTE
 MILITARY-
UNITS

Battlefield Operating System

Higher Hdq’s name
Depth of unit (meters)
Direction of movement of the unit
Disaggregated boolean
Echelon
Percent Effective
Effectiveness State
Frontage of Unit (meters)
Latitude
Longitude
Name
Operational Activity
Orientation of weapons
Phantom boolean
Purged boolean
Quantity of Sytems on-hand by type
Route segment
Side
Size
Systems requirements code
System configuration
Task
Unit Type

GROUND-
MOVERS

Air Defense Controller

Air Defense Network boolean
Air Defense Status
Assignment
Command Assignment
Command Unit boolean
Indirect Fire Systems on-hand
Number of Indirect Fire Units
Prioritized Enemy List
Signature - counter battery
Signature - counter mortar
Signature - combat
Signature - communications
Previously detected boolean
Signature - IR
Signature - Moving Target Radar
Signature - photo
Net speed from last time step
System weight factor

 JTFp FOM
 (Partial - Aggregate
 Ground Player)

OBJECT ATTRIBUTE
 Player entity name

federate id
affliliation
motion type
voice nets
jtids nets
trap tre
comander type

Aggregate Entity radar cross section
radar detectable
elint detectable
comint detectable
ir detectable
photoint detectable
air to air engageable
surf to air engageable
air to surf engageable
surf to surf engageable
composition

Dead Reckoned time at last cse change
 Players lat at last cse change

lng at last cse change
alt at last cse change
cse at last cse change
hspd at last cse change
vspd at last cse change

Aggregate depth
 Ground Player front

orientation

Attributes used for
detection's

Figure 8 Attributes used to define reflected units

possible false targets are created and saved in the
terrain data base, then the number of false targets and
their locations must be conveyed to the other federates.
Interactions are used to deliver this information.
Distributed Eagle made no assumption as to which
units have to play on a particular federate; therefore,
all possible interactions that could normally occur
between units in a standalone version must be defined
in the FOM. A total of 23 interactions are defined to
satisfy both the actions between units and services. A
typical sequence of interactions that may occur in
Eagle is shown in Figure 10. In one Eagle federate, a
mechanized infantry company and a field artillery
battalion are played. In the second Eagle federate, the
Brigade headquarters that is controlling the infantry
and artillery units and an enemy company is played.
The sequence of interactions begins with the infantry
company that requests a call for fire. Of the 11 events
that occur, six result in RTI interactions between units
because they do not exist on the same federate.

Eagle Simulation Eagle Simulation

Network

INDIRECT FIRE
INTERACTION SEQUENCEEVENTS EVENTS

1. Friendly requests FA from
 its Headquarters

3. FA Unit receives Fire
 Mission
4. FA Unit Fires Mission

7. Friendly Unit Updates
 Ammo On hand

9. Terrain Mgr updates
 False Targets in Terrain
10. FA Unit notifies FSE of
 Msn status

2. Friendly FSE receives
 requests and assigns Msn

5. Enemy unit resolves
 attrition
6. Attrition Mgr returns
 Ammo Consumed

8. Attrition Mgr broadcasts
 False Targets in Terrain

11. FSE receives Msn
 status

 Commo Interaction Event 1

Commo Interaction Event 2

Ammo Used Interaction Event 6

Terrain DB Interaction Event 8

X

X

 Indirect Fire Interaction Event 4

Commo Interaction Event 10

Figure 10 Eagle Interaction Sequence

Whereas the set of interactions in the Eagle Early
Analysis Experiment is an exhaustive set of all possible
actions, the set used for the JTFp FOM was derived as
part of the negotiations between the federates based on
the scenario that was to be played. The interactions
can be categorized in two groups: interactions between
units and federation management interactions (Figure
11). Of the 23 interaction defined in the JTFp FOM,
Eagle subscribed and published to ten.

0 Unit Interactions
- Detection (implicit)
- Indirect Fire
- Air to surface
- Surface to air
- Communications

0 Federation Management
Interactions

- Initialization

Interaction Initiating Receiving
TBM Warming Player Eagle Commo Manager - Player
TBMLaunchAlert Player Eagle Commo Manager- Player
Situation Report Player - Eagle Commo Manager Player (JTF HQ)
RequestAirSupport Player - Eagle Commo Manager Player (JTF HQ)
AirToAggregate GroundEngage Player Eagle Attrition Manager
DiscreteGroundToAirEngage Player Eagle Attrition Manager
AggregateGround ToAirEngage Eagle Attrition Manager Player
Get & Return LOS Eagle Terrain Manager Surface Cover
Initialize Federation Federation Status Eagle Federation Status
Execute Federation Federation Status Eagle Federation Status

JTFp has defined 24 Interactions
Eagle subscribes/published to 10

Figure 11 JTFp Interactions

Just as in the declaration of the attributes associated
with the negotiated object classes, parameters
associated with each of these interactions had to also be
negotiated. The final definition was a compromise
between the federates and hence Eagle had to translate
between the form used within Eagle and that defined in
the JTFp FOM.

The defining of a FOM is a mandatory step in creating
a federation. Not only is it required by the HLA
compliance rules, but in a practical sense it is the basis
upon which each federate proceeds with their own
implementation. During the integration testing of the
JTFp federation it was not uncommon for
inconsistencies to occur. In every case, the base line
document that was used to resolve the problem was the
JTFp FOM. The FOM is the contract between the
simulation participants and its early definition in the
evolution of creating a federation can not be over
emphasized.

6.0 TIME MANAGEMENT AND EVENT
SYNCHRONIZATION
Time management and event synchronization are key
areas of concern within the analytical community. Our
simulations require that causality between events be
maintained so that subsequent analysis of battle
outcomes can be validated and verified. Important
decisions on the future of the Army are many times
based on this analysis; therefore, consistency in the
execution of our simulations is of primary importance.

To meet the analytical community’s requirements and
the associated concerns of the training community, the
HLA has provided Time Management services. These
time management services provide the means to
maintain event synchronization and causality between

federates to whatever degree is required by the
application. The management of time was a key design
element of making Eagle HLA compliant.

6.1 Overview of Eagle’s time management.
Eagle is a combat analytical simulation that has a
hybrid event structure that relies on both the notion of
continuous time and the projecting of discrete events
within a limited look ahead time (Figure 12).

Shoot Move Look Decide

Start of Time
Step
e.g...

Time step = 2 min.
TIME = 780 sec

Air/ADA
interactions
Projected

for TS

Update of state for the
next Time Step (TS)

Ground/AIR Maneuver
Cbt Spt/Service

Projected
Situation Update
for Time = 900

.e.g..
Event

TIME = 899 sec

Start of Time
Step
e.g...

TIME = 900 sec

Air/ADA Events Scheduled

2 min.

Eagle Hybrid Time Management - Time step & Event

Figure 12 Eagle Time Management

Continuous time is simulated with a time step scheme
that is normally set at one to five minutes. Within this
“time step” causality is maintained by the simulation
with any discrete events that may occur. Continuous
events are executed prior to each time step bringing the
simulation “up to state” for the given time. Simulation
algorithms that support these events are unique to this
notion of the event occurring over a continuous time
rather than discrete time. Eagle classifies all ground
maneuver actions as continuous. This includes events
such as shooting direct and indirect fires, conducting
engineer work, moving, consuming, detecting,
intelligence fusion, maneuver command & control,
coordinating fire support, coordinating engineer
support, coordinating air support, and communicating.
Eagle classifies all air to ground and ground to air
interactions as discrete events. Eagle allows air units to
project their path over the time step. Air defense (AD)
units determine discrete points of interaction between
the maximum range of their weapon system and the
projected paths of the air units. Given the unique
decision process of the AD units, all air-ground events
are determined for the time step. These events are time
ordered and then executed. After each event is
executed, the air unit is given an opportunity to change
its flight. If the unit changes its flight path, all AD
units are given an opportunity to reallocate their
firings. This may entail the adding and removing of

events on the event queue. This process of discrete
event air/AD interactions continues until no more
events are projected to occur within the time step.

6.2 Eagle and the RTI
The challenge of integrating Eagle with the RTI is to
maintain a consistent view of time within Eagle
regardless of the types of simulations that are
participating in a federation. The Eagle Early Analysis
Experiment uses the following time management
schemes: timestepped actions, event actions, as-fast-as-
possible, and conservative (non-rollback-based)
synchronization protocols . Eagle federates have the
normal capability to disaggregate combat units into the
Distributed Interactive Simulation (DIS) environment.
Consistency is required to be maintained between the
Eagle “constructive” simulation and the DIS “virtual”
simulation. Time management schemes used to
maintain this consistency are: timestepped actions,
event actions, “independent” time advance , and scaled
real-time (constrained) . The JTFp uses the following
time management schemes: timestepped actions, event
actions, scaled real-time (constrained) , and optimistic
(rollback-based) synchronization protocols.

A basic requirement for Eagle to participate in each of
these ProtoFederations is that there can not be a unique
Eagle for each federation. Therefore, a mixture of
event ordering and transportation services is required,
allowing Eagle to execute simultaneously in all three
ProtoFederations. The basic design decision when
incorporating the RTI into Eagle was to subordinate
the Eagle’s event controller to the RTI’s event
management schema. Eagle still maintains its event
controller, yet when interacting with the RTI, it must
receive from the RTI permission to execute each of its
events. The event controller must be modified because
the RTI may in essence say that an event can not occur
because it has an external event for the simulation to
consider before it can execute the requested event.

6.3 The Eagle Early Analysis Experiment Time
Management
As stated previously, those events that are used to bring
an Eagle model “up to state” are classified as
continuous events. These events which can be
summarized as shoot, move, look, and decide all have
the same execution time but are coordinated with a
separate numerical prioritization. Within Eagle, the
sensitivity of the algorithms that model the physical
activities of a unit is affected by the interval of the time
step. For example, at a time step of five minutes, the
distance moved by a combat unit may exceed the
distance intervals used to determine the coefficients of

the attrition algorithms. Thus, to be fair, all unit
movement must be coordinated and occur before the
resolution of attrition. If each unit was allowed to
independently move then shoot, an unfair battle would
occur because one unit would be closer to the other
when it had its chance to shoot. As the time step gets
smaller the distance moved is smaller, thus this
coordination structure is not necessary (such as in
DIS). However, given the relatively large time steps of
the Eagle model, this control is needed and the time
management services are used to effect this
coordination between Eagle federates when executing
these continuous events. The basic principle is that
Eagle coordinates these events by incrementing time at
a very small interval (called the update state interval).
Eagle executes events to the nearest second; therefore,
a coordinating time of .1 seconds is used to ensure that
this update process does not interfere with any normal
air AD events.

Time Step Update Process - Projecting Situation for next time Step

Shoot Move Look Decide

Eagle Federate Eagle FederateRTI Executive

1. Next Event Request T=1 1. Next Event Request T=1
2. Time advance Grant: T=1

3. Compute Attrition
 DF Send Interaction T=1.1

3. Compute Attrition
 (No external int.)

4. Time Advance Request
 T=1.1

4. Time Advance Request
 T=1.1

5. Time Advance Grant: T=1.1
6. Receive Interaction T=1.1

8. Time Advance Grant: T=1.1

7. Compute Attrition

Same process with
 Move (T=1.2) &
 Decide (T=1.3)

9. Time Advance Request
 T=2

9. Time Advance Request
 T=2 10. Time Advance Grant T=2

Projected
Situation Time

Same process with
 Move (T=1.2) &
 Decide (T=1.3)

Fed Time + Lookahead

Figure 13 Eagle Time Step Updates

The example shown in Figure 13, begins with each
Eagle federate requesting to go to the projected update
situation time. Upon approval from the RTI with a
time advance grant, each Eagle federate computes its
attrition. During this process, one Eagle federate
outputs an attrition interaction. The federation time
used on the interaction is the current federation time
plus the update state interval which in this case is the
same as the lookahead time. Upon finishing computing
all internal attrition and outputting all external
attrition, each federate requests to advance to its next
coordinating time which is always the current
federation time plus the update state interval. The
federate will receive all object management requests
from the RTI with this same time and then receive a
time advance grant. This process continues through
each of Eagle’s update state intervals thus insuring that

consistency exists between the multiple data bases prior
to the information being needed by the local Eagle
service. For example, all units will have moved to their
new location and their reflected representations
updated prior to the Eagle event of detection.

6.4 The Joint Training ProtoFederation Time
Management
Whereas Eagle uses both time step and event time
management schemes, the JTFp federates use only an
event time management scheme. For Eagle, this meant
that as Eagle requested to advance to a desired time,
object management requests could be received with a
time stamp less then that requested. The RTI would
deliver these requests and allow Eagle to advance to a
time short of that requested. Figure 14 depicts a
typical set of exchanges between Eagle and one of the
federates.

Event Update Process

 1. Unit 1 Update Att. T= 5
 2. Unit 2 Update Att. T= 5
 3. Next Event Request T=5

 8. Unit 1 Update Att. T= 9
 9. Next Event Request T=9

17. Resolve ground/air firing
18. Unit 2 Update Att. Values
 T=5.5 (Fed +Lookahead)

Shoot Move Look Decide

Eagle Federate Air/Navy ModelRTI

4. Next Event Request
 T= Proj. sit = 5.9

10. Recompute Air/ADA
 events for Time step
11. Ground to Air Firing
 Send Interaction T = 5.4
12. Next Event Request
 T= 5.4

15. Update Ammo O/H
16. Next Event Request
 T= Proj. sit = 5.9

Air / ADA event s

5. Reflect Att. Values Unit 1 T=5
6. Reflect Att. Values Unit 2 T=5
7. Time Advance Grant T=5

13. Receive Interaction T=5.4
14. Time Advance Grant T=5.4

(Granted to Time Step T=4)

Figure 14 Eagle Event Updates

In the example shown in Figure 14, the Eagle federate
is requesting to go to the projected update situation
time. However, the RTI has object management
messages from the Air/Navy model with a time stamp
less then that requested. So in this case, the RTI
delivers these messages and approves Eagle to advance
to this new time short of that requested. Within the
Eagle model, depending on the type of object
management request, the message will be processed. In
this case, as these are reflect attribute value calls, Eagle
will allow the Air Defense (AD) to reassess its ability
to fire on the planes. The example shows that one of
the AD units has decided to fire and an interaction is
sent to the RTI. Eagle now no longer wants to go to its
projected update state, but to the event time of the
Air/AD interaction. The RTI eventually grants Eagle to
the Air/AD interaction time, at which time additional
internal processing occurs. Finally, Eagle again
requests to go to its projected update situation time. If

Eagle had received an additional reflect attribute value
call prior to the Air/AD interaction event that would
have invalidated the Air/AD interaction, Eagle would
have used the retract event service provided by the
RTI. This exchange demonstrates the use of the time
management services to maintain causality between the
federates in the execution of the scenario.

The RTI time management services provide a very
flexible and robust means to coordinate the events
between federates. Eagle’s participation in multiple
federations each with a different time management
scheme demonstrates that the RTI can support the
needs of the analytical community.

7.0 SUMMARY
Eagle successfully participated in each of these efforts.
Limited testing was accomplished comparing the
ALSP distributed version of Eagle with the new HLA
distributed version. This testing showed that the HLA
version had better performance and, as with the ALSP
version, was able to guarantee the delivery of messages
so that multiple runs of the model resulted in the same
sequence of actions and outcomes. The RTI allows an
analytical model to maintain consistency across a
distributed network using time and events as a means
to synchronize the actions and to maintain a consistent
view of the battlefield.

Summary statistics of this effort are shown in Figure
15.

0 Code Changes (< 3.0%)
- Basic model is app. 750,000 lines of code
- Added Translator Interface app. 16,000 lines of Lisp code
- Added 3,742 lines of C++ interface code.

0 Time
- Initial design & coding of Distributed Eagle using

ALSP = 10 months
- SOM/FOM development = 1 months
- Modify the ALSP interface code = 3 months
- Creation of C++ interface code = 1 month
- Testing = 1 month

0 Eagle’s Design (Architecture) & Object Oriented approach
facilitated transition.

Figure 15 Summary Statistics

The HLA provides an excellent vehicle for the
analytical community to meet its current and future
needs. Through the Object Model Template process,
the HLA will allow the simulation community at large
to understand the richness of our analytical

simulations. In addition, through the RTI and
associated interface specification, the HLA provides an
excellent means to share data within a simulation but
more importantly to share data with other simulations.

8.0 REFERENCES
Alexander, Robert S., Intelligent Applications of
Artificial Intelligence, The Bulletin of Military
Operations Research - PHALANX (Volume 24,
Number 4), December 1991, p 20-23.

